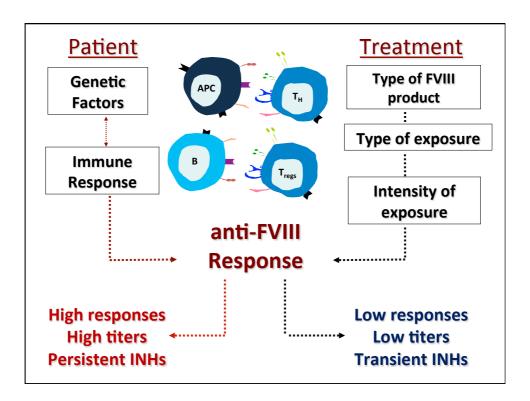
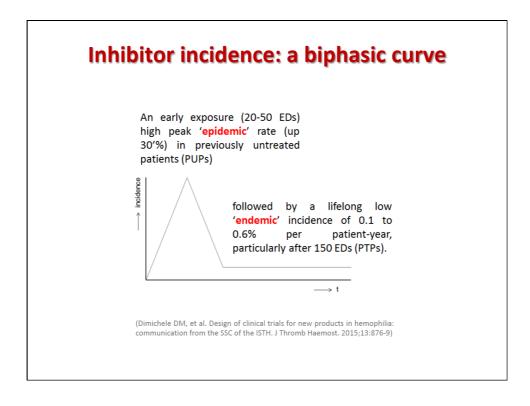


## RECOMMENDATIONS AND GUIDELINES

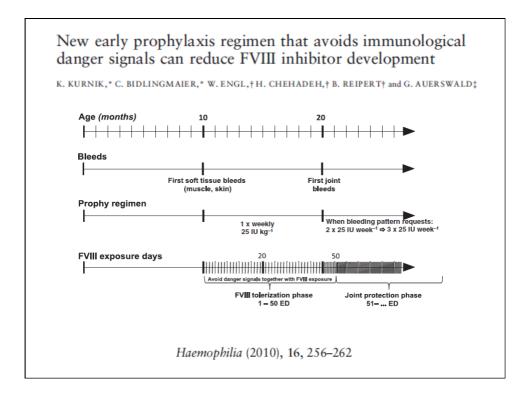
Definitions in hemophilia: communication from the SSC of the ISTH

V. S. BLANCHETTE,\* N. S. KEY,† L. R. LJUNG,‡ M. J. MANCO-JOHNSON,§ H. M. VAN DEN BERG¶ and A. SRIVASTAVA,\*\* FOR THE SUBCOMMITTEE ON FACTOR VIII, FACTOR IX AND RARE COAGULATION DISORDERS J Thromb Haemost 2014; **12**:1935–9.

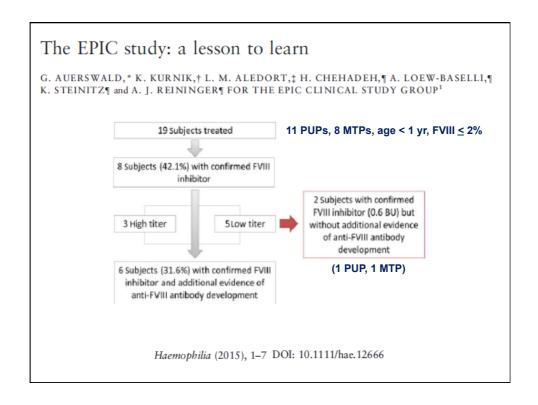

Inhibitors: <a>> 0.6 BU/mL (Nijmegen mod. – Bethesda) on 2 consecutive occasions within a 1-4 week period</a>


(washout from conventional FVIII replacement of at least 48 h)

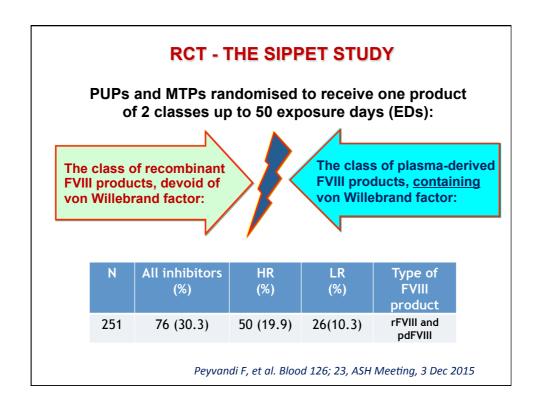
• Clinically relevant: < 66% recovery and/or T<sup>1/2</sup> < 7 h.

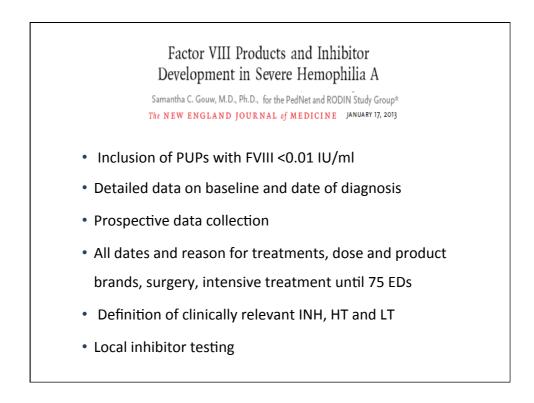

(conventional FVIII products).

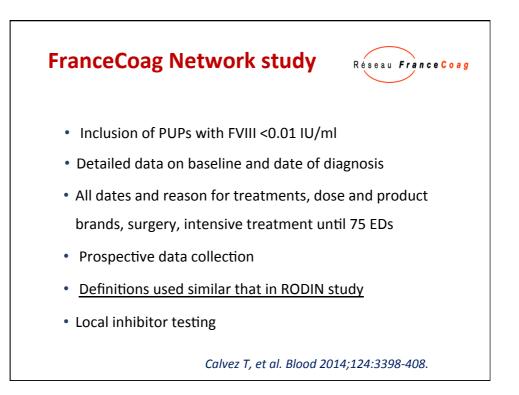
- Low-response inhibitors: < 5 BU/mL
- High-response inhibitors: > 5 BU/mL
- Transient inhibitors: < 0.6 BU/mL within 6 months of first detection despite continuing FVIII challenge

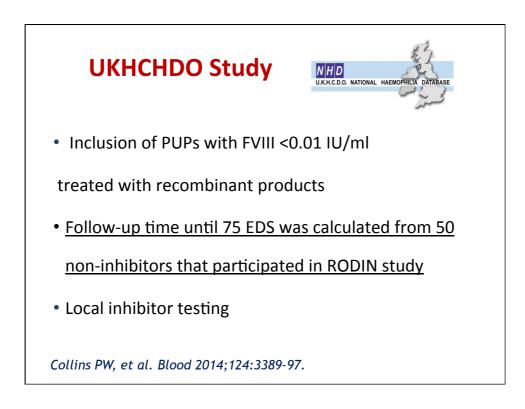




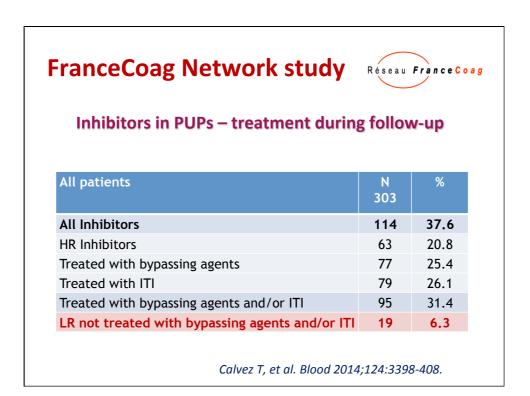


| STUDY                                                            | N*  | All inhibitors<br>(%) | HR<br>(%) | LR<br>(%) | Type of<br>FVIII<br>product |
|------------------------------------------------------------------|-----|-----------------------|-----------|-----------|-----------------------------|
| Bray et al (1994)<br>Gruppo et al (1998)<br>Goodeve et al (2000) | 72  | 22 (30.5)             | 9 (12.5)  | 13 (18.1) | Recombinate                 |
| Lusher et al (1993) (2004)                                       | 65  | 19 (29.2)             | 15 (23.1) | 4 (6.1)   | Kogenate                    |
| Kreuz et al (2005)<br>Oldenburg et al (2006)                     | 37^ | 5 (13.5)              | 4 (10.8)  | 1 (2.7)   | Kogenate-FS                 |
| Courter & Bedrosian (2001)<br>Lusher et al (2003) (2005)         | 101 | 32 (31.7)             | 16 (15.8) | 16 (15.8) | ReFacto                     |
| Auerswald et al (2012)                                           | 18  | 5 (27.8)              | NA        | NA        | Advate                      |

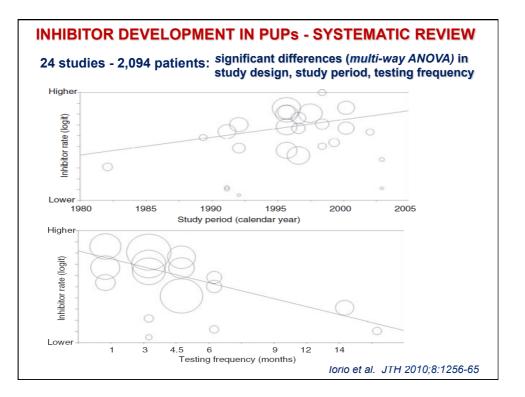




16/03/16




| Subject | EDs at 1°<br>pos. INH | 1°&Max<br>INH titer<br>(BU/mL) | Binding Antibodies                        |
|---------|-----------------------|--------------------------------|-------------------------------------------|
| HR1     | 11                    | 7.7                            | lgG, lgG1                                 |
| HR2     | 19                    | 28.0                           | lgG, lgG1, 2, 3, 4                        |
| HR3     | 5                     | >38                            | Negative on screening,<br>NA on follow-up |
| LR1     | 23                    | 0.9                            | lgG, lgG1                                 |
| LR2     | 5                     | 1.5                            | lgG, lgG1, 3                              |
| LR3     | 16                    | 1.1                            | lgG, lgG1, 3, 4                           |
| LR4     | 16                    | 0.6                            | Negative on all visits                    |
| LR5     | 28                    | 0.6                            | Negative on all visits                    |








| STUDY       | N   | All inhibitors<br>(%) | HR<br>(%) | LR<br>(%) | Type of<br>FVIII<br>product |
|-------------|-----|-----------------------|-----------|-----------|-----------------------------|
| RODIN       | 574 | 177 (30.8)            | 116(20.2) | 61(10.6)  | rFVIII and<br>pdFVIII       |
| France Coag | 303 | 114 (37.6)            | 63 (20.8) | 51 (16.8) | rFVIII                      |
| UKHCDO*     | 407 | 118 (29.0)            | 60 (14.7) | 58 (14.3) | rFVIII                      |





 Increased inhibitor incidence in severe haemophilia A since 1990

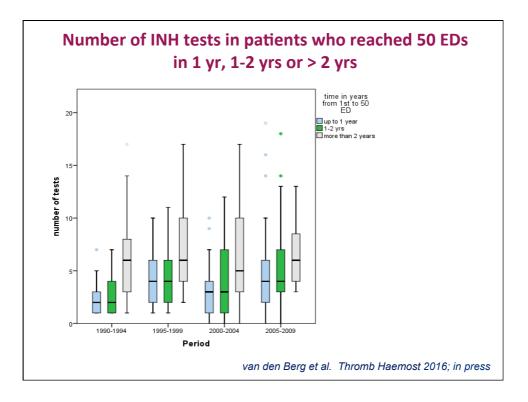
 attributable to more low titre inhibitors

 Thrombosis and Haemostasis 115.3/2016

 H. Marijke van den Berg<sup>1\*</sup>; S. Mojtaba Hashemi<sup>1\*</sup>; Kathelijn Fischer<sup>1,2</sup>; Pia Petrini<sup>3</sup>; Rolf Ljung<sup>4</sup>; Anne Rafowicz<sup>5</sup>; Manuel Carcao<sup>6</sup>; Günter Auerswald<sup>7</sup>; Karin Kurnik<sup>8</sup>; Gili Kenet<sup>9</sup>; Elena Santagostino<sup>10</sup>; for the PedNet Study group#

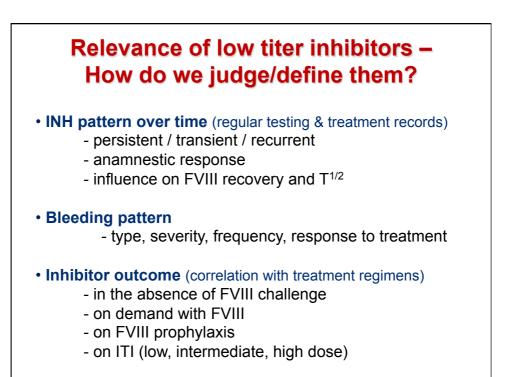
 • Aim: to report the cumulative incidence of LR and HR inhibitors

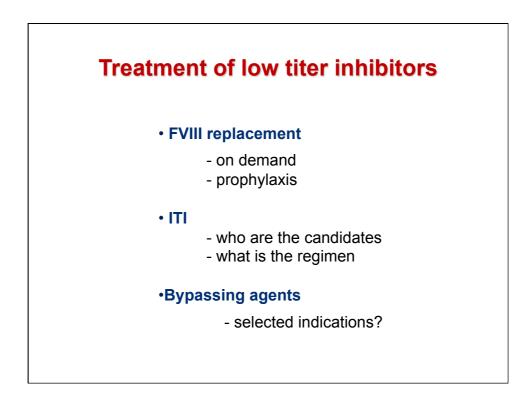
 adjusted for genetic and non-genetic risk factors over a 20-year

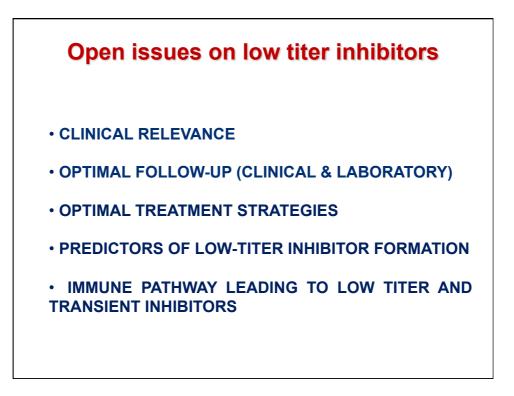

 period in the cohort of PUPs with severe hemophilia A from the

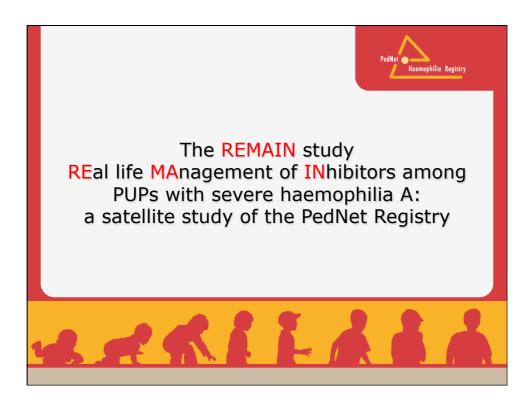
 CANAL Study (1990-2000) and PedNet Registry (2000-2009)

 • Inhibitor testing: locally performed using the Nijmegen modification


 of the Bethesda assay after 2000 (cut-off values: 0.3-0.6 BU).


|                                                                                | <b>Birth cohort</b><br>1990-1994<br>N = 144 | <b>Birth cohort</b><br>1995-1999<br>N = 178  | Birth cohort<br>2000-2004<br>N = 299 | Birth cohort<br>2005-2009<br>N = 305         | Entire cohort<br>1990-2009<br>N = 926 |
|--------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|
| Clinically relevant INHs<br>Cumulative incidence<br>95% CI                     | <b>19.5</b><br>13.0- 26.0                   | <b>27.6</b><br>20.9 – 34.3                   | <b>30.9*</b><br>25.6 – 36.2          | <b>29.0*</b><br>23.9 – 34.1                  | <b>27.9</b><br>25.0 – 30.8            |
| ED at INH development<br>Median (IQR)                                          | 15 (10 – 25)                                | 12 (8 – 20)                                  | 14 (9 – 22)                          | 14 (9 – 17)                                  | 14 (9 – 19)                           |
| High titer INHs<br>Cumulative incidence<br>95% CI                              | <b>16.9</b><br>10.6 – 23.2                  | <b>22.7</b><br>16.4 – 29.0                   | <b>23.5</b><br>18.6 – 28.4           | <b>20.5</b><br>15.8 – 25.2                   | <b>21.4</b><br>18.7 – 24.1            |
| Low titer INHs<br>Cumulative incidence<br>95% CI                               | <b>3.1</b><br>0.2 – 6.0                     | <b>6.3</b><br>2.6 – 10.0                     | <b>9.6*</b><br>6.1 – 13.1            | <b>10.5*</b><br>6.8 – 14.2                   | <b>8.2</b><br>6.2 – 10.2              |
| Inhibitor testing rate<br>Tests/year, median (IQR)<br>Tests/50ED, median (IQR) | <b>1.9</b> (1.3 – 3.2)<br><b>3</b> (2 – 6)  | <b>2.9</b> (1.7 – 4.6)*<br><b>5</b> (3 – 7)* | · ,                                  | <b>4.3</b> (2.5 – 8.9)*<br><b>5</b> (3 – 8)* | , ,                                   |





| Distribution of confounding factors in birth cohorts                                         |                                                   |                                  |                           |                                  |                         |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|---------------------------|----------------------------------|-------------------------|--|--|
|                                                                                              | Birth cohort<br>1990-1994                         | Birth cohort<br>1995-1999        | Birth cohort<br>2000-2004 | Birth cohort<br>2005-2009        | р                       |  |  |
| Caucasian ethnicity, %                                                                       | 89.6                                              | 89.9                             | 86.6                      | 84.3                             | 0.24                    |  |  |
| Family history of inhibitors %                                                               | 6.3                                               | 7.3                              | 9.0                       | 9.8                              | 0.41                    |  |  |
| Large F8 gene mutations, %                                                                   | 59.0                                              | 59.0                             | 64.9                      | 56.4                             | 0.34                    |  |  |
| Peak treatment at first<br>exposure (≥5 EDs), %                                              | 11.8                                              | 19.1                             | 18.4                      | 12.5                             | 0.06                    |  |  |
| Dose during first 5 EDs, IU/kg<br>All patients, median (IQR)<br>Peak of ≥5 EDs, median (IQR) | 43 (31-50)<br><b>56</b> (37-91)                   | 47 (37–66)<br><b>88</b> (54–106) |                           | 44 (33-58)<br><b>78</b> (46-120) | 0.06<br><b>&lt;0.05</b> |  |  |
| Prophylaxis started before 50 <sup>th</sup> ED, %                                            | 48.6                                              | 50.6                             | 66.9                      | 74.8                             | <0.05                   |  |  |
| EDs at start prophylaxis<br>Median (IQR)                                                     | <b>17</b> (9 - 29)                                | <b>17</b> (8 - 28)               | <b>13</b> (6 – 22)        | <b>11</b> (4 - 19)               | <0.05                   |  |  |
|                                                                                              | van den Berg et al. Thromb Haemost 2016; in press |                                  |                           |                                  |                         |  |  |

| Risk of inhibitor development in birth cohorts |                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                            |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| All inf                                        | All inhibitors High titer INHs                                                                           |                                                                                                                                                                                                                                                                          | er INHs                                                                                                                                                                                                                                                      | Low titer INHs                                                                                                                                                                                                                                                                                             |  |
| Unadjusted                                     | Adjusted                                                                                                 | Unadjusted                                                                                                                                                                                                                                                               | Adjusted                                                                                                                                                                                                                                                     | Unadjusted                                                                                                                                                                                                                                                                                                 |  |
| Hazard ratio                                   | Hazard ratio                                                                                             | Hazard ratio                                                                                                                                                                                                                                                             | Hazard ratio                                                                                                                                                                                                                                                 | Hazard ratio                                                                                                                                                                                                                                                                                               |  |
| Reference                                      | Reference                                                                                                | Reference                                                                                                                                                                                                                                                                | Reference                                                                                                                                                                                                                                                    | Reference                                                                                                                                                                                                                                                                                                  |  |
| 1.52                                           | 1.53                                                                                                     | 1.41                                                                                                                                                                                                                                                                     | 1.43                                                                                                                                                                                                                                                         | 2.17                                                                                                                                                                                                                                                                                                       |  |
| (0.95–2.41)                                    | (0.94–2.50)                                                                                              | (0.85-2.34)                                                                                                                                                                                                                                                              | (0.83-2.44)                                                                                                                                                                                                                                                  | (0.68–6.91)                                                                                                                                                                                                                                                                                                |  |
| 1.70                                           | 1.96                                                                                                     | 1.45                                                                                                                                                                                                                                                                     | 1.35                                                                                                                                                                                                                                                         | 3.24                                                                                                                                                                                                                                                                                                       |  |
| (1.11-2.60)                                    | (1.06-2.83)                                                                                              | (0.91–2.31)                                                                                                                                                                                                                                                              | (0.74-2.13)                                                                                                                                                                                                                                                  | (1.13-9.30)                                                                                                                                                                                                                                                                                                |  |
| 1.61                                           | 2.34                                                                                                     | 1.27                                                                                                                                                                                                                                                                     | 1.71                                                                                                                                                                                                                                                         | 3.68                                                                                                                                                                                                                                                                                                       |  |
| (1.05-2.47)                                    | (1.42-4.92)                                                                                              | (0.79–2.04)                                                                                                                                                                                                                                                              | (1.00-3.13)                                                                                                                                                                                                                                                  | (1.29-10.49)                                                                                                                                                                                                                                                                                               |  |
|                                                | All int<br>Unadjusted<br>Hazard ratio<br>Reference<br>1.52<br>(0.95-2.41)<br>1.70<br>(1.11-2.60)<br>1.61 | All inbitors           Unadjusted<br>Hazard ratio         Adjusted<br>Hazard ratio           Reference         Reference           1.52<br>(0.95-2.41)         1.53<br>(0.94-2.50)           1.70<br>(1.11-2.60)         1.96<br>(1.06-2.83)           1.61         2.34 | All inhibitorsHigh titeUnadjusted<br>Hazard ratioAdjusted<br>Hazard ratioUnadjusted<br>Hazard ratioReferenceReferenceReference1.52<br>(0.95-2.41)1.53<br>(0.94-2.50)1.41<br>(0.85-2.34)1.70<br>(1.11-2.60)1.96<br>(1.06-2.83)1.45<br>(0.91-2.31)1.612.341.27 | All inhibitorsHigh titer INHsUnadjusted<br>Hazard ratioAdjusted<br>Hazard ratioAdjusted<br>Hazard ratioReferenceReferenceReference1.52<br>(0.95-2.41)1.53<br>(0.94-2.50)1.41<br>(0.85-2.34)1.43<br>(0.85-2.34)1.70<br>(1.11-2.60)1.96<br>(1.06-2.83)1.45<br>(0.91-2.31)1.35<br>(0.74-2.13)1.612.341.271.71 |  |







